Individual differences in science competence among students are associated with ventrolateral prefrontal cortex activation

Allaire-Duquette, G., Belanger, M., Grabner, R. H., Koschutnig, K., & Masson, S. (2019). Individual differences in science competence among students are associated with ventrolateral prefrontal cortex activation. Journal of Neuroscience Research, 97(9), 1163-1178. doi:10.1002/jnr.24435

ABSTRACT: Functional neuroimaging studies have revealed that, compared with novices, science experts show increased activation in dorsolateral and ventrolateral prefrontal brain areas associated with inhibitory control mechanisms when providing scientifically valid responses in tasks related to electricity and mechanics. However, no study thus far has explored the relationship between activation of the key brain regions involved in inhibitory control mechanisms, namely the ventrolateral prefrontal cortex (VLPC) and dorsolateral prefrontal cortex (DLPC), and individual differences in conceptual science competence, while controlling for scientific training. In the present study, 24 secondary school students (11 female participants, 13 male participants) were selected from a larger pool based on their performance on a conceptual science questionnaire and were divided into groups with low and high conceptual science competence. In an fMRI block design, participants had to verify the correctness (true or false) of congruent and incongruent statements. In congruent statements, both spontaneous and scientific conceptions about given natural phenomena lead to a scientifically appropriate judgment. However, in incongruent statements, commonly held spontaneous conceptions about natural phenomena lead to a scientifically in‐ appropriate judgment. The interaction effect reveals that students with higher con‐ ceptual science competence display stronger activation of the left VLPC and DLPC in incongruent trials than in congruent trials. These findings show that activation of the VLPC and DLPC when reasoning in incongruent situations underlies individual differences in conceptual science competence, and suggests stronger recruitment of inhibitory control mechanisms in more competent individuals.