Is inhibitory control involved in discriminating pseudowords that contain the reversible letters b and d?

Brault Foisy, L.-M., Ahr, E., Masson, S., Houdé, O., & Borst, G. (2017). Is inhibitory control involved in discriminating pseudowords that contain the reversible letters b and d? Journal of experimental child psychology, 162, 259-267. doi:10.1016/j.jecp.2017.05.011

ABSTRACT: Children tend to confuse reversible letters such as b and d when they start learning to read. According to some authors, mirror errors are a consequence of the mirror generalization (MG) process that allows one to recognize objects independently of their left– right orientation. Although MG is advantageous for the visual recognition of objects, it is detrimental for the visual recognition of reversible letters. Previous studies comparing novice and expert readers demonstrated that MG must be inhibited to discriminate reversible single letters. In this study, we investigated whether MG must also be inhibited by novice readers to discriminate between two pseudowords containing reversible letters. Readable pseudowords, rather than words, were used to mimic early non-automatic stages of reading when reading is achieved by decoding words through grapheme–phoneme pairing and combination. We designed a negative priming paradigm in which school-aged children (10-year-olds) were asked to judge whether two pseudowords were identical on the prime and whether two animals were identical on the probe. Children required more time to determine that two animals were mirror images of each other when preceded by pseudowords containing the reversible letter b or d than when preceded by different pseudowords containing the control letter f or t (Experiment 1) or by different pseudowords that differed only by the target letter f or k (Experiment 2). These results suggest that MG must be inhibited to discriminate between pseudowords containing reversible letters, generalizing the findings regarding single letters to a context more representative of the early stages of reading.

Blocking our brain: How we can avoid repetitive mistakes!

Brault Foisy, L.-M., Ahr, E., Masson, S., Borst, G., & Houdé, O. (2015). Blocking our brain: How we can avoid repetitive mistakes! Frontiers for Young Minds, 3(17), 1-9. doi:10.3389/frym.2015.00017

ABSTRACT. Persistent mistakes at schools are dif cult for teachers, parents, and most of all the children to deal with. Children who keep making the same mistakes tend to be viewed as bad students, but here we propose a different point of view! We think that children often make mistakes not because they do not know the correct answer, but because they fail to block a quicker but wrong answer that seems to make sense. Studies of the brain actually revealed that children, as well as adults, use an area of the brain called the prefrontal cortex to inhibit persistent mistakes. Learning to inhibit these mistakes is thus a promising way to help children overcome dif culties at school as well as to help us think more logically as we face problems in everyday life.

Comprendre le cerveau des élèves pour mieux les préparer aux apprentissages en arithmétique dès le préscolaire

Deshaies, I., Miron, J.-M., & Masson, S. (2015). Comprendre le cerveau des élèves pour mieux les préparer aux apprentissages en arithmétique dès le préscolaire. Approche neuropsychologique des apprentissages chez l'enfant, 134, 39-45. url: labneuroeducation.org/s/Deshaies2015.pdf

RÉSUMÉ. Certains prérequis s’avèrent essentiels à la réussite des élèves en mathématiques. En s’appuyant sur des études neuroscientifiques et cognitivistes portant sur les nombres et le calcul, cet article propose trois prérequis susceptibles de préparer le cerveau de l’élève du préscolaire à l’arithmé- tique : le développement du sens des nombres, l’établissement du lien entre le sens des nombres et le système numérique symbolique, et le développement de l’inhibition.

Cliquez sur l'image pour télécharger l'article.

Apprentissages scolaires difficiles, recyclage neuronal et pratiques d’enseignement : le cas de l’identification des mots écrits

Brault Foisy, L.-M., Riopel, M., Myre-Bisaillon, J., & Masson, S. (2015). Apprentissages scolaires difficiles, recyclage neuronal et pratiques d’enseignement : le cas de l’identification des mots écrits. Approche neuropsychologique des apprentissages chez l'enfant, 134, 31-38. url: labneuroeducation.org/s/Brault2015.pdf

RÉSUMÉ : Selon la théorie du recyclage neuronal, le développement de la capacité à lire nécessite que la fonction initiale d’une région précise du cerveau soit reconvertie afin qu’elle devienne capable d’identifier les mots écrits. À ce jour, peu de recherches ont analysé l’impact de l’enseignement sur le mécanisme de recyclage neuronal. Cet article propose d’examiner la littérature scientifique s’y rattachant et de discuter des retombées possibles des recherches existantes pour le domaine de l’éducation.

Cliquez sur l'image pour télécharger l'article.

Is inhibition involved in overcoming a common physics misconception in mechanics?

Brault Foisy, L.-M., Potvin, P., Riopel, M., & Masson, S. (2015). Is inhibition involved in overcoming a common physics misconception in mechanics? Trends in Neuroscience and Education, 4(1-2), 26-36. doi: 10.1016/j.tine.2015.03.001

ABSTRACT. Science education is often challenged by students' misconceptions about various phenomena. Recent studies show that these misconceptions coexist with scientific conceptions, even after a conceptual change occurs. However, the mechanisms involve in overcoming the interference caused by this coexistence remain poorly understood. A possible explanation is that inhibition could play a role in learning science. An fMRI protocol was used to obtain functional brain images of novices and experts while performing a cognitive task in mechanics, a scientific discipline for which misconceptions are known to be frequent and persistent. The results show that experts, significantly more than novices, activate brain areas associated with inhibition: the right ventrolateral prefrontal cortex and the left dorsolateral prefrontal cortex. This suggests that the experts' misconceptions in mechanics have not been eradicated or transformed during learning; they would rather have remained encoded in their brain and were then inhibited to provide a correct answer.